logo

nanoFRET publications

Is this your homework, Larry? (Walter Sobchak)

1. L. Francés-Soriano , N. Hildebrandt, and L.J. Charbonnière. Lanthanides as luminescence imaging reagents. In: J. Reedijk, K. Poeppelmeier, Editors: Comprehensive Inorganic Chemistry III. Elsevier 2023, 486-510. ISBN 978-0-12-823153-1.
https://doi.org/10.1016/B978-0-12-823144-9.00095-9.

2. L.J. Charbonnière and N. Hildebrandt. Lanthanide Nanoparticles and their Biological Applications. In: R. Pöttgen, T. Jüstel and C.A. Strassert, Editors: Rare Earth Chemistry. De Gruyter 2020, ISBN 978-3-11-065360-1.
https://doi.org/10.1515/9783110654929-033

3. J. Xu, L. Francés-Soriano, J. Guo, T. Hallaj, X. Qiu, and N. Hildebrandt. Energy transfer with nanoparticles for in vitro diagnostics. In: W. Parak and N. Feliu, Editors: Frontiers of Nanoscience, Volume 16, Colloids for Nanobiotechnology. Elsevier 2020, ISBN 9780081028285.
https://doi.org/10.1016/B978-0-08-102828-5.00003-6

4. N. Hildebrandt. Diagnostic médical à l’échelle nanométrique : détection des biomarqueurs des maladies avec des technologies de fluorescence. Dans: M.-T. Dinh-Audouin, D. Olivier et P. Rigny (editeurs): Chimie et biologie de synthèse. Les applications. EDP sciences 2018, ISBN 978-2-7598-2315-4.
https://www.mediachimie.org/sites/default/files/biologie_p201.pdf

5. J. Zwier, N. Hildebrandt. Time-gated FRET detection for multiplexed biosensing. In: Chris D. Geddes, editor: Reviews in Fluorescence 2016. Springer International 2017, ISBN 978-3-319-48259-0.
https://doi.org/10.1007/978-3-319-48260-6_3

6. N. Hildebrandt. How to apply FRET – From experimental design to data analysis. In: I. Medintz and N. Hildebrandt, editors: FRET – Förster Resonance Energy Transfer. From Theory to Applications”, Wiley-VCH, Germany 2014, ISBN 978-3-527-32816-1.
https://doi.org/10.1002/9783527656028.ch05

7. J. C. Claussen, N. Hildebrandt, I. L. Medintz. FRET-based Cellular Sensing with Genetically Encoded Fluorescent Indicators. In: I. Medintz and N. Hildebrandt, editors: FRET – Förster Resonance Energy Transfer. From Theory to Applications”, Wiley-VCH, Germany 2014, ISBN 978-3-527-32816-1.
https://doi.org/10.1002/9783527656028.ch10

8. D. Geißler, N. Hildebrandt. Semiconductor Quantum Dots as FRET Acceptors for Multiplexed Diagnostics and Molecular Ruler Application. In: Nano-Biotechnology for Biomedical and Diagnostic Research, Advances in Experimental Medicine and Biology, Vol. 733 (Editors: E. Zahavy, A. Ordentlich, S. Yitzhaki, A. Shafferman). Springer Verlag, Germany, 2012. pp. 75-86. ISBN 978-94-007-2554-6.
https://doi.org/10.1007/978-94-007-2555-3_8

9. Z. Jin, N. Hildebrandt. Quantum Dot Nanoparticles for In Vitro Sensing, In: Jesus M. de la Fuente, Joseph, Poulouse , editors: Nanobiotechnology, 4, FNS, UK: Elsevier, 2012, pp. 291-307. ISBN 978-0-12-415769-9.
https://doi.org/10.1016/B978-0-12-415769-9.00012-1

1. D. Mathur, S. A. Diaz, N. Hildebrandt, R. D. Pensack, B. Yurke, A. Biaggne, L. Li, J. S. Melinger, M. G. Ancona, W. B. Knowlton, and I. L. Medintz. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chemical Society Reviews 2023, 52, 7848-7948.
https://doi.org/10.1039/d0cs00936a

2. E. Park, S. Y. Choi, J. Kim, N. Hildebrandt, J. S. Lee, and J.-M. Nam. Nanotechnologies for the Diagnosis and Treatment of SARS-CoV-2 and Its Variants. Small Methods 2023, 7(7), 2300034.
https://doi.org/10.1002/smtd.202300034

3. N. Hildebrandt, M. Lim, N. Kim, D. Y. Choi, and J.-M. Nam. Plasmonic quenching and enhancement: metal–quantum dot nanohybrids for fluorescence biosensing. Chemical Communications 2023, 59, 2352-2380.
https://doi.org/10.1039/D2CC06178C

4. H. H. Gorris, Z. Farka, and N. Hildebrandt. A Primer on Luminescence Sensing. Analysis & Sensing 2023, 3(2), e202200113.
https://doi.org/10.1002/anse.202200113

5. X. Qiu, J. Xu, M. Cardoso Dos Santos, and N. Hildebrandt. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer. Accounts of Chemical Research 2022, 55(4), 551-564.
https://doi.org/10.1021/acs.accounts.1c00691

6. Y. Li, R. Su, H. Li, J. Guo, N. Hildebrandt, and C. Sun. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Analytical Chemistry 2022, 94 (1), 193–224.
https://doi.org/10.1021/acs.analchem.1c04294

7. M. Cardoso Dos Santos, W.R. Algar, I.L. Medintz, and N. Hildebrandt. Quantum Dots for Förster Resonance Energy Transfer (FRET). TrAC – Trends in Analytical Chemistry 2020, 125, 115819.
https://doi.org/10.1016/j.trac.2020.115819

8. C. Chen and N. Hildebrandt. Resonance energy transfer to gold nanoparticles: NSET defeats FRET. TrAC – Trends in Analytical Chemistry 2020, 123, 115748.
https://doi.org/10.1016/j.trac.2019.115748

9. W.R. Algar, N. Hildebrandt, S.S. Vogel, and I.L. Medintz. FRET as a biomolecular research tool—understanding its potential while avoiding pitfalls. Nature Methods 2019, 16 (9), 815-829.
https://doi.org/10.1038/s41592-019-0530-8

10. X. Qiu and N. Hildebrandt. A clinical role for Förster resonance energy transfer in molecular diagnostics of disease. Expert Review of Molecular Diagnostics 2019, 19 (9), 767-771.
https://doi.org/10.1080/14737159.2019.1649144

11. Z.S. Pehlivan, M. Torabfam, H. Kurt, C. Ow-Yang, N. Hildebrandt, and M. Yüce. Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019). Microchimica Acta 2019, 186 (8), 563.
https://doi.org/10.1007/s00604-019-3659-3

12. N. Hildebrandt and O. Tagit. Colloidal Nanoparticles for Signal Enhancement in Optical Diagnostic Assays. Journal of Nanoscience and Nanotechnology 2018, 18, 6671-6679.
https://doi.org/10.1166/jnn.2018.15748

13. O. Tagit and N. Hildebrandt. Fluorescence Sensing of Circulating Diagnostic Biomarkers Using Molecular Probes and Nanoparticles. ACS Sensors 2017, 2 (1), 31-45.
https://doi.org/10.1021/acssensors.6b00625

14. N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Díaz, J. B. Delehanty, and I. L. Medintz. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews 2017, 117 (2), 536-711.
https://doi.org/10.1021/acs.chemrev.6b00030

15. M. Sy, A. Nonat, N. Hildebrandt, and L.J. Charbonnière. Lanthanide-based luminescent biolabelling. Chemical Communications 2016, 52, 5080-5095.
https://doi.org/10.1039/C6CC00922K

16. M. Cardoso Dos Santos and N. Hildebrandt. Recent Developments in Lanthanide-to-Quantum Dot FRET Using Time-Gated Fluorescence Detection and Photon Upconversion. TrAC – Trends in Analytical Chemistry 2016, 84, 60-71.
https://doi.org/10.1016/j.trac.2016.03.005

17. D. Geißler and N. Hildebrandt. Recent developments in FRET diagnostics using quantum dots. Analytical and Bioanalytical Chemistry 2016, 408 (17), 4475-4483.
https://doi.org/10.1007/s00216-016-9434-y

18. K.D. Wegner and N. Hildebrandt. Quantum Dots: Bright and Versatile In vitro and In vivo Fluorescence Imaging Biosensors. Chemical Society Reviews 2015, 44, 4792-4834.
https://doi.org/10.1039/C4CS00532E

19. N. Hildebrandt, K. D. Wegner, and W. R. Algar. Luminescent Terbium Complexes: Superior Förster Resonance Energy Transfer Donors for Flexible and Sensitive Multiplexed Biosensing. Coordination Chemistry Reviews 2014, 273–274, 125–138.
https://doi.org/10.1016/j.ccr.2014.01.020

20. D. Geißler, S. Lindén, K. Liermann, K. D. Wegner, L. J. Charbonnière, and N. Hildebrandt. Lanthanides and Quantum Dots as Förster Resonance Energy Transfer Agents for Diagnostics and Cellular Imaging. Inorganic Chemistry 2014, 53, 1824-1838.
https://doi.org/10.1021/ic4017883

21. W. R. Algar, H. Kim, I. L. Medintz, and N. Hildebrandt. Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications. Coordination Chemistry Reviews 2014, 263-264, 65-85.
https://doi.org/10.1016/j.ccr.2013.07.015

22. B. Hötzer, I.L. Medintz, N. Hildebrandt. Fluorescence in Nanobiotechnology – Sophisticated Fluorophores for Novel Applications. Small 2012, 8 (15), 2297-2326.
https://doi.org/10.1002/smll.201200109

23. Z. Jin, N. Hildebrandt. Quantum dots for in vitro diagnostics and cellular imaging. Trends in Biotechnology 2012, 30 (7), 394-403.
https://doi.org/10.1016/j.tibtech.2012.04.005

24. N. Hildebrandt. Biofunctional Quantum Dots: Controlled Conjugation for Multiplexed Biosensors. ACS Nano 2011, 5(7), 5286–5290.
https://doi.org/10.1021/nn2023123

25. D. Geißler, N. Hildebrandt. Lanthanide Complexes in FRET Applications. Current Inorganic Chemistry 2011, 1, 17-35.
https://doi.org/10.2174/1877944111101010017

26. L.J. Charbonnière, N. Hildebrandt. Lanthanide Complexes and Quantum Dots: A Bright Wedding for Resonance Energy Transfer. European Journal of Inorganic Chemistry 2008, 3241–3251.
https://doi.org/10.1002/ejic.200800332

27. N. Hildebrandt, H.-G. Löhmannsröben. Quantum Dot Nanocrystals and Supramolecular Lanthanide Complexes – Energy Transfer Systems for Sensitive In Vitro Diagnostics and High Throughput Screening in Chemical Biology. Current Chemical Biology 2007; 1(2): 167-186.
https://doi.org/10.2174/2212796810701020167

28. M. Dekaliuk, Z. Farka, and N. Hildebrandt. The pros and cons of nucleic acid-amplified immunoassays—a comparative study on the quantitation of prostate-specific antigen with and without rolling circle amplification. Analytical and Bioanalytical Chemistry 2024, published online.
https://doi.org/10.1007/s00216-024-05357-y

29. P. Jurczak, N. Fayad, M. Bernard, P. Czaplewska, and N. Hildebrandt. Monomer-dimer equilibrium of human cystatin C during internalization into cancer cells.. ChemBioChem 2024, e202400226.
https://doi.org/10.1002/cbic.202400226

30. F. Pini, R. C. Knighton, L. K. Soro, L. J. Charbonnière, M. M. Natile, and N. Hildebrandt. Equal Rights for Activators – Ytterbium to Terbium Cooperative Sensitization in Molecular Upconversion. Advanced Optical Materials 2024, 2400423.
https://doi.org/10.1002/adom.202400423

31. D. A. Hastman, S. Hooe, M. Chiriboga, S. A. Díaz, K. Susumu, M. H. Stewart, C. Green, N. Hildebrandt, and I. L. Medintz. Multiplexed DNA and Protease Detection with Orthogonal Energy Transfer on a Single Quantum Dot Scaffolded Biosensor. ACS Sensors 2024, 9(1), 157-170.
https://doi.org/10.1021/acssensors.3c01812

32. L. Haye, N. Fayad, R. C. Knighton, A. Combes, O. Jeannin, A. Klymchenko, T. Gallavardin, N. Hildebrandt, L. J. Charbonnière, and A. Reisch. NIR FRET Luminescence in Rhenium Complex and Dye Co-Loaded Polymer Nanoparticles. Advanced Materials Technologies 2023, 202301016, 8(22), 2301016.
https://doi.org/10.1002/admt.202301016

33. M. Dekaliuk and N. Hildebrandt. Lanthanide-FRET molecular beacons for microRNA biosensing, logic operations, and physical unclonable functions. European Journal of Inorganic Chemistry 2023, 26(36), e202300288.
https://doi.org/10.1002/ejic.202300288

34. F. Pini, L. Francés-Soriano, V. Andrigo, M. M. Natile, and N. Hildebrandt. Optimizing Upconversion Nanoparticles for FRET Biosensing. ACS Nano 2023, 17(5), 4971-4984.
https://doi.org/10.1021/acsnano.2c12523

35. S. Bhuckory, S. Lahtinen, N. Höysniemi, J. Guo, X. Qiu, T. Soukka, and N. Hildebrandt. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors. Nano Letters 2023, 23(6), 2253-2261.
https://doi.org/10.1021/acs.nanolett.2c04899

36. L. Haye, P. I. Diriwari, A. Alhalabi, T. Gallavardin, A. Combes, A. S. Klymchenko, N. Hildebrandt, X. Le Guevel, and A. Reisch. Enhancing Near Infrared II Emission of Gold Nanoclusters via Encapsulation in Small Polymer Nanoparticles. Advanced Optical Materials 2023, 11(11), 2201474.
https://doi.org/10.1002/adom.202201474

37. J.-H. Choi, G. Fremy, T. Charnay, N. Fayad, J. Pécaut, S. Erbek, N. Hildebrandt, V. Martel-Frachet, A. Grichine, and O. Sénèque. Luminescent Peptide/Lanthanide(III) Complex Conjugates with Push–Pull Antennas: Application to One- and Two-Photon Microscopy Imaging. Inorganic Chemistry 2022, 61(50), 20674–20689.
https://doi.org/10.1021/acs.inorgchem.2c03646

38. C. Liu, X. Wei, H. Zhang, M. Zhang, X.-F. Yu, N. Hildebrandt, Q.-Y. Luo, and Z. Jin. Nucleic Acid Hybridization Enhanced Luminescence for Rapid and Sensitive RNA and DNA Based Diagnostics. Analytical Chemistry 2022, 94(46), 15964-15970.
https://doi.org/10.1021/acs.analchem.2c02673

39. E. Hatem, N. El Banna, A. Heneman-Masurel, D. Baïlle, L. Vernis, S. Riquier, M.-P. Golinelli-Cohen, O. Guittet, C. Vallières, J.-M. Camadro, X. Qiu, N. Hildebrandt, M. Lepoivre, and M.-E. Huang. Novel insights into redox-based mechanisms for auranofin-induced rapid cancer cell death. Cancers 2022, 14(19), 4864.
https://doi.org/10.3390/cancers14194864

40. H.-J. Fu, L. Luo, Y. Wang, C.-L. Wang, H. Wang, Y.-D. Shen, H.-T. Lei, N. Hildebrandt, and Z.-L. Xu. Enzyme-Induced Silver Deposition on Gold Nanorods for Naked-Eye and Smartphone Detection of Acrylamide in Food. ACS Applied Nano Materials 2022, 5(9), 12915-12925.
https://doi.org/10.1021/acsanm.2c02763

41. M. Dekaliuk, P. Busson, and N. Hildebrandt. Isothermal Rolling Circle Amplification and Lanthanide-Based FRET for Femtomolar Quantification of MicroRNA. Analysis & Sensing 2022, 2(6), e202200049.
https://doi.org/10.1002/anse.202200049

42. R. Su, Y.-T. Wu, S. Doulkeridou, X. Qiu, T. J. Sorensen, K. Susumu, I. L. Medintz, P. M. P. van Bergen en Henegouwen, and N. Hildebrandt. A Nanobody-on-Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angewandte Chemie International Edition 2022, 61(33), e202207797.
https://doi.org/10.1002/anie.202207797

43. L. Francés-Soriano, N. Estebanez, J. Pérez-Prieto, and N. Hildebrandt. DNA-coated upconversion nanoparticles for sensitive nucleic acid FRET biosensing. Advanced Functional Materials 2022, 32(37), 2201541.
https://doi.org/10.1002/adfm.202201541

44. H.-J. Fu, R. Su, L. Luo, Z.-J. Chen, T. J. Sorensen, N. Hildebrandt, and Z. L. Xu. Rapid and Wash-Free Time-Gated FRET Histamine Assays Using Antibodies and Aptamers. ACS Sensors 2022, 7, 1113-1121.
https://doi.org/10.1021/acssensors.2c00085

45. F. Pini, L. Francés-Soriano, N. Peruffo, A. Barbon, N. Hildebrandt, and M. M. Natile. Spatial and Temporal Resolution of Luminescence Quenching in Small Upconversion Nanocrystals. . ACS Applied Materials & Interfaces 2022, 14(9), 11883-11894.
https://doi.org/10.1021/acsami.1c23498

46. R. C. Knighton, L. K. Soro, L. Francés-Soriano, A. Rodríguez-Rodríguez, G. Pilet, M. Lenertz, C. Platas-Iglesias, N. Hildebrandt, and L.J. Charbonnière. Cooperative Luminescence and Cooperative Sensitisation Upconversion of Lanthanide Complexes in Solution. Angewandte Chemie International Edition 2022, 61(4), e202113114.
https://doi.org/10.1002/anie.202113114

47. J. Xu, X. Qiu, and N. Hildebrandt. When Nanoworlds Collide: Implementing DNA Amplification, Nanoparticles, Molecules, and FRET into a Single MicroRNA Biosensor. Nano Letters 2021, 21(11), 4802-4808.
https://doi.org/10.1021/acs.nanolett.1c01351

48. M. Amjadi, T. Hallaj, and N. Hildebrandt. A sensitive homogeneous enzyme assay for euchromatic histone-lysine- N-methyltransferase 2 (G9a) based on terbium-to-quantum dot time-resolved FRET. BioImpacts 2021, 11(3), 173-179.
https://doi.org/10.34172/bi.2021.23

49. L. Francés-Soriano, M. Leino, M. Cardoso Dos Santos, D. Kovacs, K. E. Borbas, O. Söderberg, and N. Hildebrandt. In Situ Rolling Circle Amplification Förster Resonance Energy Transfer (RCA-FRET) for Washing-Free Real-Time Single-Protein Imaging. Analytical Chemistry 2021, 93 (3), 1842–1850.
https://doi.org/10.1021/acs.analchem.0c04828

50. R. Knighton, L. K. Soro, A. Lecointre, G. Pilet, A. Fateeva, L. Pontille, L. Francés-Soriano, N. Hildebrandt, and L. J. Charbonniere. Upconversion in molecular hetero-nonanuclear lanthanide complexes in solution. Chemical Communications 2021, 57, 53-56.
https://doi.org/10.1039/D0CC07337G

51. S. Bhuckory, K. D. Wegner, X. Qiu, Y.-T. Wu, T. L. Jennings, A. Incamps, and N. Hildebrandt. Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET. Molecules 2020, 25, 3679.
https://doi.org/10.3390/molecules25163679

52. M. Cardoso Dos Santos, I. Colin, G. Ribeiro Dos Santos, K. Susumu, M. Demarque, I.L. Medintz, and N. Hildebrandt. Time-gated FRET nanoprobes for autofluorescence-free long-term in vivo imaging of developing zebrafish. Advanced Materials 2020, 32 (39), 2003912.
https://doi.org/10.1002/adma.202003912

53. C. Charpentier, V. Cifliku, J. Goetz, A. Nonat, C. Cheignon, M. Cardoso Dos Santos, L. Francés-Soriano, K.-L. Wong, L.J. Charbonnière, and N. Hildebrandt. Ultrabright terbium nanoparticles for FRET biosensing and in-situ imaging of epidermal growth factor receptors. Chemistry – A European Journal 2020, 26 (64), 14602-14611.
https://doi.org/10.1002/chem.202002007

54. T. Hallaj, M. Amjadi, X. Qiu, K. Susumu, I.L. Medintz, and N. Hildebrandt. Terbium–To–Quantum Dot Förster Resonance Energy Transfer for Homogeneous and Sensitive Detection of Histone Methyltransferase Activity. Nanoscale 2020, 12, 13719-13730.
https://doi.org/10.1039/D0NR03383A

55. J. Xu, J. Guo, N. Golob-Schwarzl, J. Haybaeck, X. Qiu, and N. Hildebrandt. Single-measurement multiplexed quantification of microRNAs from human tissue using catalytic hairpin assembly and Förster resonance energy transfer. ACS Sensors 2020, 5(6), 1768–1776.
https://doi.org/10.1021/acssensors.0c00432

56. C. Leger, A. Yahia-Ammar, K. Susumu, I.L. Medintz, A. Urvoas, M. Valerio-Lepiniec, P. Minard, and N. Hildebrandt. Picomolar Biosensing and Conformational Analysis Using Artificial Bidomain Proteins and Terbium-to-Quantum Dot Förster Resonance Energy Transfer. ACS Nano 2020, 14, 5956-5967.
https://doi.org/10.1021/acsnano.0c01410

57. L. Francés-Soriano, N. Peruffo, M.M. Natile, and N. Hildebrandt. Er3+-to-dye energy transfer in DNA-coated core and core/shell/shell upconverting nanoparticles with 980 nm and 808 nm excitation of Yb3+ and Nd3+. Analyst 2020, 145, 2543-2553.
https://doi.org/10.1039/C9AN02532D

58. L. Labrador-Páez, C. Mingoes, F. Jaque, P. Haro-González, H. Bazin, J. M. Zwier, D. Jaque, and N. Hildebrandt. pH-dependence of water-anomaly temperature investigated by Eu(III)-cryptate luminescence. Analytical and Bioanalytical Chemistry 2019, 412, 73-80.
https://doi.org/10.1007/s00216-019-02215-0

59. X. Qiu, O. Guittet, C. Mingoes, N. El Banna, M.-E. Huang, M. Lepoivre, and N. Hildebrandt. Quantification of Cellular Deoxyribonucleosidetriphosphates by Rolling Circle Amplification and Förster Resonance Energy Transfer. Analytical Chemistry 2019, 91(22), 14561-14568.
https://doi.org/10.1021/acs.analchem.9b03624

60. E. Porret, M. Jourdan, B. Gennaro, C. Comby-Zerbino, F. Bertorelle, V. Trouillet, X. Qiu, C. Zoukimian, D. Boturyn, N. Hildebrandt, R. Antoine, J.-L. Coll, and X. Le Guével. Influence of the Spatial Conformation of Charged Ligands on the Optical Properties of Gold Nanoclusters. The Journal of Physical Chemistry C 2019, 123(43), 26705-26717.
https://doi.org/10.1021/acs.jpcc.9b08492

61. M. Dekaliuk, X. Qiu, F. Troalen, P. Busson, and N. Hildebrandt. Discrimination of the V600E Mutation in BRAF by Rolling Circle Amplification and Förster Resonance Energy Transfer. ACS Sensors 2019, 4(10), 2786-2793.
https://doi.org/10.1021/acssensors.9b01420

62. C. Chen, B. Corry, L. Huang, and N. Hildebrandt. FRET-modulated multi-hybrid nanoparticles for brightness-equalized single-wavelength barcoding. Journal of the American Chemical Society 2019, 141(28), 11123-11141.
https://doi.org/10.1021/jacs.9b03383

63. M. Cardoso Dos Santos, A. Runser, H. Bartenlian, A.M. Nonat, L.J. Charbonnière, A.S. Klymchenko, N. Hildebrandt, and A. Reisch. Lanthanide-Complex-Loaded Polymer Nanoparticles for Background-Free Single-Particle and Live-Cell Imaging. Chemistry of Materials 2019, 31(11), 4034-4041.
https://doi.org/10.1021/acs.chemmater.9b00576

64. J. Guo, C. Mingoes, X. Qiu, and N. Hildebrandt. Simple, Amplified, and Multiplexed Detection of MicroRNAs Using Time-Gated FRET and Hybridization Chain Reaction. Analytical Chemistry 2019, 91, 3101−3109.
https://doi.org/10.1021/acs.analchem.8b05600

65. J. Guo, X. Qiu, C. Mingoes, J.R. Deschamps, K. Susumu, I.L. Medintz, and N. Hildebrandt. Conformational Details of Quantum Dot-DNA Resolved by Förster Resonance Energy Transfer Lifetime Nanoruler. ACS Nano 2019, 13, 505-514.
https://doi.org/10.1021/acsnano.8b07137

66. C. Léger, T. Di Meo, M. Aumont-Nicaise, C. Velours, D. Durand, I. L. de la Sierra-Gallay, H. van Tilbeurgh, N. Hildebrandt, M. Desmadril, A. Urvoas, M. Valerio-Lepiniec, and P. Minard. Ligand-induced conformational switch in an artificial bidomain protein scaffold. Scientific Reports 2019, 9:1178.
https://doi.org/10.1038/s41598-018-37256-5

67. A. Petreto, M. Cardoso Dos Santos, O. Lefebvre, G. Ribeiro Dos Santos, P. Ponzellini, D. Garoli, F. De Angelis, M. Ammar, and N. Hildebrandt. Optimizing FRET on aluminum surfaces via controlled attachment of fluorescent dyes. ACS Omega 2018, 3, 18867-18876.
https://doi.org/10.1021/acsomega.8b02774

68. X. Qiu, J. Xu, J. Guo, A. Yahia-Ammar, N.-I. Kapetanakis, I. Duroux-Richard, J.J. Unterluggauer, N. Golob-Schwarzl, C. Regeard, C. Uzan, S. Gouy, M. DuBow, J. Haybaeck, F. Apparailly, P. Busson, and N. Hildebrandt. Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. Chemical Science 2018, 9, 8046-8055.
https://doi.org/10.1039/C8SC03121E

69. P. A. Rojas-Gutierrez, S. Bhuckory, C. Mingoes, N. Hildebrandt, C. E. DeWolf, and J. A. Capobianco. A Route to Triggered Delivery via Photocontrol of Lipid Bilayer Properties Using Lanthanide Upconversion Nanoparticles. ACS Applied Nanomaterials 2018, 1 (9), 5345-5354.
https://doi.org/10.1021/acsanm.8b01396

70. C. Chen, L. Ao, Y.-T. Wu, V. Cifliku, M. Cardoso Dos Santos, E. Bourrier, M. Delbianco, D. Parker, J. Zwier, L. Huang, and N. Hildebrandt. Single‐Nanoparticle Cell Barcoding by Tunable FRET from Lanthanides to Quantum Dots. Angewandte Chemie International Edition 2018, 57, 13686-13690.
https://doi.org/10.1002/anie.201807585

71. Y.-T. Wu, X. Qiu, S. Lindbo, K. Susumu, I.L. Medintz, S. Hober, and Niko Hildebrandt. Quantum Dot Based FRET Immunoassay for HER2 Using Ultrasmall Affinity Proteins. Small 2018, 14, 1802266.
https://doi.org/10.1002/smll.201802266

72. C. Chen, C. Midelet, S. Bhuckory, N. Hildebrandt, and M. H. V. Werts. Nanosurface Energy Transfer from Long-Lifetime Terbium Donors to Gold Nanoparticles. The Journal of Physical Chemistry C 2018, 122, 17566-17574.
https://doi.org/10.1021/acs.jpcc.8b06539

73. X. Qiu, J. Guo, J. Xu, and N. Hildebrandt. Three-Dimensional FRET Multiplexing for DNA Quantification with Attomolar Detection Limits. The Journal of Physical Chemistry Letters 2018, 9, 4379−4384.
https://doi.org/10.1021/acs.jpclett.8b01944

74. G. Annio, T. L. Jennings, O. Tagit, and N. Hildebrandt. Sensitivity-Enhancement of FRET Immunoassays by Multiple-Antibody Conjugation on Quantum Dots. Bioconjugate Chemistry 2018, 29, 2082−2089.
https://doi.org/10.1021/acs.bioconjchem.8b00296

75. M. Cardoso Dos Santos, J. Goetz, H. Bartenlian, K.-L. Wong, L.J. Charbonnière, and N. Hildebrandt. Autofluorescence-free Live-cell Imaging Using Terbium Nanoparticles. Bioconjugate Chemistry 2018, 29, 1327–1334.
https://doi.org/10.1021/acs.bioconjchem.8b00069

76. Y. Ishida, I. Akita, T. Pons, T. Yonezawa, and N. Hildebrandt. Real-Space Investigation of Energy Transfer Through Electron Tomography. The Journal of Physical Chemistry C 2017, 121(51), 28395-28402.
https://doi.org/10.1021/acs.jpcc.7b10628

77. S. Bhuckory, E. Hemmer, Y.-T. Wu, A. Yahia-Ammar, F. Vetrone, and N. Hildebrandt. Core or shell? Er3+ FRET donors in upconversion nanoparticles. European Journal of Inorganic Chemistry 2017, 5186–5195.
https://doi.org/10.1002/ejic.201700904

78. E. Porret, L. Sancey, A. Martín-Serrano, M. Montañez, R. Seemann, A. Yahia-Ammar, H. Okuno, F. Gomez, A. Ariza, N. Hildebrandt, J.-B. Fleury, J.-L. Coll, X. Le Guével. Hydrophobicity of Gold Nanoclusters Influences their Interactions with Biological Barriers. Chemistry of Materials 2017, 29(17), 7497-7506.
https://doi.org/10.1021/acs.chemmater.7b02497

79. S. Díaz, G. Lasarte Aragones, S. Buckhout-White, X. Qiu, E. Oh, K. Susumu, J. Melinger, A. Huston, N. Hildebrandt, and I.L. Medintz. Bridging Lanthanide to Quantum Dot Energy Transfer with a Short Lifetime Organic Dye. The Journal of Physical Chemistry Letters 2017, 8 (10), 2182-2188.
https://doi.org/10.1021/acs.jpclett.7b00584

80. X. Qiu, J. Guo, Z. Jin, A. Petreto, I. L. Medintz, N. Hildebrandt. Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning. Small 2017, 13, 1700332.
https://doi.org/10.1002/smll.201700332

81. M. Amjadi, T. Hallaj, H. Asadollahi, Z. Song, M. de Frutos, and N. Hildebrandt. Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole. Sensors and Actuators B: Chemical 2017, 244, 425-432
https://doi.org/10.1016/j.snb.2017.01.003

82. S. Bhuckory, L. Mattera, K. D. Wegner, X. Qiu, Y-T. Wu, L. J. Charbonnière, P. Reiss, and N. Hildebrandt. Direct conjugation of antibodies to the ZnS shell of quantum dots for FRET immunoassays with low picomolar detection limits. Chemical Communications 2016, 52, 14423-14425.
https://doi.org/10.1039/C6CC08835J

83. X. Qiu, K. D. Wegner, Y.-T. Wu, P.M.P. van Bergen en Henegouwen, T. L. Jennings, and N. Hildebrandt. Nanobodies and Antibodies for Duplexed EGFR/HER2 Immunoassays Using Terbium-to-Quantum Dot FRET. Chemistry of Materials 2016, 28, 8256-8267.
https://doi.org/10.1021/acs.chemmater.6b03198

84. H. S. Afsari, M. Cardoso dos Santos, S. Lindén, T. Chen, X. Qiu, P. M. P. van Bergen en Henegouwen, T. L. Jennings, K. Susumu, I. L. Medintz, N. Hildebrandt, L. W. Miller, Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Science Advances 2016, 2, e1600265.
https://doi.org/10.1126/sciadv.1600265

85. L. Mattera, S. Bhuckory, K.D. Wegner, X. Qiu, F. Agnese, C. Lincheneau, T. Senden, D. Djurado, L.J. Charbonnière, N. Hildebrandt, and P. Reiss. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits. Nanoscale 2016, 8, 11275-11283.
https://doi.org/10.1039/C6NR03261C

86. A. Yahia Ammar, D. Sierra, F. Mérola, N. Hildebrandt, and X. Le Guével. Self-Assembled Gold Nanoclusters For Bright Fluorescence Imaging and Enhanced Drug Delivery. ACS Nano 2016, 10 (2), 2591-2599.
https://doi.org/10.1021/acsnano.5b07596

87. S. Bhuckory, O. Lefebvre, X. Qiu, K. D. Wegner, and N. Hildebrandt. Evaluating quantum dot performance in homogeneous FRET immunoassays for prostate specific antigen. Sensors 2016, 16(2), 197 (11 pages).
https://doi.org/10.3390/s16020197

88. X. Qiu and N. Hildebrandt. Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer. ACS Nano 2015, 9 (8), 8449-8457.
https://doi.org/10.1021/acsnano.5b03364

89. Z. Jin, D. Geißler, X. Qiu, K. D. Wegner, and N. Hildebrandt. Rapid, Amplification-Free, and Sensitive Diagnostic Assay for Single-Step Multiplexed Fluorescence Detection of MicroRNA. Angewandte Chemie International Edition 2015, 54, 10024-10029.
https://doi.org/10.1002/anie.201504887

90. O. Tagit, G. Annio, and N. Hildebrandt. Terbium to quantum rod Förster resonance energy transfer for homogeneous bioassays with picomolar detection limits. Microchimica Acta 2015, 182 (9), 1693-1700.
https://doi.org/10.1007/s00604-015-1500-1

91. A. Gaudin, O. Tagit, D. Sobot, S. Lepetre-Mouelhi, J. Mougin, T. F. Martens, K. Braeckmans, V. Nicolas, D. Desmaële, S. C. de Smedt, N. Hildebrandt, P. Couvreur, K. Andrieux. Transport Mechanisms of Squalenoyl Adenosine Nanoparticles Across the Blood-Brain Barrier. Chemistry of Materials 2015, 27 (10), 3636–3647.
https://doi.org/10.1021/acs.chemmater.5b00267

92. L. Mattsson, K. D. Wegner, N. Hildebrandt, and T. Soukka. Upconverting Nanoparticle to Quantum Dot FRET for Homogeneous Double-Nano Biosensors. RSC Advances 2015, 5, 13270-13277.
https://doi.org/10.1039/C5RA00397K

93. S. Lindén, M. K. Singh, K. D. Wegner, M. Regairaz, F. Dautry, F. Treussart, and N. Hildebrandt. Terbium-Based Time-Gated Förster Resonance Energy Transfer Imaging for Evaluating Protein-Protein Interactions on Cell Membranes. Dalton Transactions 2015, 44, 4994-5003.
https://doi.org/10.1039/C4DT02884H

94. A. Gaudin, M. Yemisci, H. Eroglu, S. Lepetre-Mouelhi, O. F. Turkoglu, B. Dönmez-Demir, S. Caban, M. F. Sargon, S. Garcia-Argote, G. Pieters, O. Loreau, B. Rousseau, O. Tagit, N. Hildebrandt, Y. Le Dantec, J. Mougin, S. Valetti, H. Chacun, V. Nicolas, D. Desmaële, K. Andrieux, Y. Capan, T. Dalkara, and P. Couvreur. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nature Nanotechnology 2014, 9, 1054–1062.
https://doi.org/10.1038/nnano.2014.274

95. D. Henderson, L. A. Ogilvie, N. Hoyle, U. Keilholz, B. Lange, H. Lehrach, and OncoTrack Consortium. Personalized medicine approaches for colon cancer driven by genomics and systems biology: OncoTrack. Biotechnology Journal 2014, 9(9), 1104-1114.
https://doi.org/10.1002/biot.201400109

96. B. Rogez, H. Yang, E. Le Moal, S. Lévêque-Fort, E. Boer-Duchemin, F. Yao, Y.-H. Lee, Y. Zhang, K. D. Wegner, N. Hildebrandt, A. Mayne, and G. Dujardin. Fluorescence Lifetime and Blinking of Individual Semiconductor Nanocrystals on Graphene. Journal of Physical Chemistry C 2014, 118 (32), 18445–18452.
https://doi.org/10.1021/jp5061446

97. K. D. Wegner, F. Morgner, E. Oh, R. Goswami, K. Susumu, M. H. Stewart, I. L. Medintz, and N. Hildebrandt. Three-dimensional solution-phase Förster resonance energy transfer analysis of nanomolar quantum dot bioconjugates with subnanometer resolution. Chemistry of Materials 2014, 26 (14), 4299–4312.
https://doi.org/10.1021/cm502021m

98. P. J. Cywiński, T. Hammann, D. Hühn, W. J. Parak, N. Hildebrandt, and H.-G. Löhmannsröben. Europium-quantum dot nanobioconjugates as luminescent probes for time-gated biosensing. Journal of Biomedical Optics 2014, 19(10), 101506
https://doi.org/10.1117/1.JBO.19.10.101506

99. X. Le Guevel, O. Tagit, C.E. Rodríguez, V. Trouillet, M.P. Leal, and N. Hildebrandt. Ligand Effect on Size, Valence State and Red/Near Infrared Photoluminescence of Bidentate Thiol Gold Nanoclusters. Nanoscale 2014, 6 (14), 8091 – 8099.
https://doi.org/10.1039/C4NR01130A

100. J. C. Claussen, N. Hildebrandt, K. Susumu, M. Ancona, and I. L. Medintz. Complex Logic Functions Implemented with Quantum-Dot Bionanophotonic Circuits. ACS Applied Materials & Interfaces 2014, 6, 3771-3778.
https://doi.org/10.1021/am404659f

101. K. D. Wegner, S. Lindén, Z. Jin, T. L. Jennings, R. el Khoulati, P. M. P. van Bergen en Henegouwen, and N. Hildebrandt. Nanobodies and Nanocrystals: Highly sensitive quantum dot-based homogeneous FRET-immunoassay for serum-based EGFR detection. Small 2014, 10 (4), 734-740.
https://doi.org/10.1002/smll.201302383

102. J. C. Claussen, W. R. Algar, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz. Biophotonic Logic Devices Based on Quantum Dots and Temporally-Staggered Förster Energy Transfer Relays. Nanoscale 2013, 5, 12156-12170.
https://doi.org/10.1039/C3NR03655C

103. K. D. Wegner, Z. Jin, S. Lindén, T. L. Jennings, and N. Hildebrandt. Quantum-Dot-Based Förster Resonance Energy Transfer Immunoassay for Sensitive Clinical Diagnostics of Low-Volume Serum Samples. ACS Nano 2013, 7 (8), 7411–7419.
https://doi.org/10.1021/nn403253y

104. K. Nchimi-Nono, K. D. Wegner, S. Lindén, A. Lecointre, L. Ehret-Sabatier, S. Shakir, N. Hildebrandt, and L. J. Charbonnière. Activated Phosphonated Trifunctional Chelates for Highly Sensitive Lanthanide-based FRET Immunoassays Applied to Total Prostate Specific Antigen Detection. Organic & Biomolecular Chemistry 2013, 11, 6493–6501.
https://doi.org/10.1039/C3OB40898A020197

105. K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons and N. Hildebrandt. Influence of Luminescence Quantum Yield, Surface Coating and Functionalization of Quantum Dots on the Sensitivity of Time-Resolved FRET Bioassays. ACS Applied Materials & Interfaces 2013, 5, 2881-2892.
https://doi.org/10.1021/am3030728

106. D. Geißler , S. Stufler, H.-G. Löhmannsröben and N. Hildebrandt. Six-Color Time-Resolved Förster Resonance Energy Transfer for Ultrasensitive Multiplexed Biosensing. Journal of the American Chemical Society 2013, 135, 1102-1109.
https://doi.org/10.1021/ja310317n

107. W. R. Algar, A. Malonoski, K. Susumu, M. H. Stewart, N. Hildebrandt, and I. L. Medintz. Multiplexed Protease Sensing Using One Type of Quantum Dot Vector and a Time-Gated Förster Resonance Energy Transfer Relay. Analytical Chemistry 2012, 84 (22), 10136–10146.
https://doi.org/10.1021/ac3028068

108. W. R. Algar, D. Wegner, A. L. Huston, J. B. Blanco-Canosa, M. H. Stewart, A. Armstrong, P. E. Dawson, N. Hildebrandt and I. L. Medintz. Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and Biosensing. Journal of the American Chemical Society 2012, 134, 1876−1891.
https://doi.org/10.1021/ja210162f

109. F. Morgner, S. Stufler, D. Geißler, I. L. Medintz, W. R. Algar, K. Susumu, M. H. Stewart, J. B. Blanco-Canosa, P. E. Dawson and N. Hildebrandt. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties. Sensors 2011, 11(10), 9667-9684.
https://doi.org/10.3390/s111009667

110. A. Kupstatt, M.U. Kumke, N. Hildebrandt. Miniaturization of sensitive homogeneous time-resolved fluoroimmunoassays (TR-FIA) for point-of-care testing (POCT). Analyst 2011, 136 (5), 1029-1035.
https://doi.org/10.1039/C0AN00684J

111. P. J. Cywinski, A. J. Moro, T. Ritschel, N. Hildebrandt, H.-G. Löhmannsröben. Sensitive and selective fluorescence detection of guanosine nucleotides by nanoparticles conjugated with a naphthyridine. Analytical and Bioanalytical Chemistry 2011, 399(3), 1215-1222.
https://doi.org/10.1007/s00216-010-4420-2

112. C. Tan, N. Gajovic-Eichelmann, R. Polzius, N. Hildebrandt, F.F. Bier. Direct detection of Δ9-tetrahydrocannabinol in aqueous samples using a homogeneous increasing fluorescence immunoassay (HiFi). Analytical and Bioanalytical Chemistry 2010, 398, 2133-2140.
https://doi.org/10.1007/s00216-010-4109-6

113. F. Morgner, D. Geißler, S. Stufler, N.G. Butlin, H.-G. Löhmannsröben, N. Hildebrandt. A Quantum Dot-based Molecular Ruler for Multiplexed Optical Analysis. Angewandte Chemie – International Edition 2010, 49(41), 7570-7574.
https://doi.org/10.1002/anie.201002943

114. F. Sellrie, M. Beck, N. Hildebrandt, B. Micheel. A homogeneous time-resolved fluoroimmunoassay (TR-FIA) using antibody mediated luminescence quenching. Analytical Methods 2010, 2, 1298–1301.
https://doi.org/10.1039/C0AY00306A

115. D. Geißler, L.J. Charbonnière, R.F. Ziessel, N.G. Butlin, H.-G. Löhmannsröben, N. Hildebrandt. Quantum Dot Biosensors for Ultra-Sensitive Multiplexed Diagnostics. Angewandte Chemie – International Edition 2010, 49(8), 1396-1401.
https://doi.org/10.1002/anie.200906399

116. P. Kadjane, M. Starck, F. Camerel, D. Hill, N. Hildebrandt, R. Ziessel, L.J. Charbonnière. Divergent Approach to a Large Variety of Versatile Luminescent Lanthanide Complexes. Inorganic Chemistry 2009, 48, 4601–4603.
https://doi.org/10.1021/ic9001169

117. N. Hildebrandt, L.J. Charbonnière, H.-G. Löhmannsröben. Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer (FRET) Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors. Journal of Biomedicine and Biotechnology 2007, Article ID 79169.
https://doi.org/10.1155/2007/79169

118. L.J. Charbonnière, N. Hildebrandt, R.F. Ziessel, H.-G. Löhmannsröben. Lanthanides to Quantum Dots Resonance Energy Transfer in Time-Resolved FluoroImmunoAssays and Luminescence Microscopy. Journal of the American Chemical Society 2006, 128(39), 12800-12809.
https://doi.org/10.1021/ja062693a

119. N. Hildebrandt, L.J. Charbonnière, M. Beck, R.F. Ziessel, H.-G. Löhmannsröben. Quantum Dots As Efficient Energy Acceptors in a Time-Resolved Fluoroimmunoassay. Angewandte Chemie – International Edition 2005, 44(46), 7612-7615.
https://doi.org/10.1002/anie.200501552

120. J. C. Claussen, W. R. Algar, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz. Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer. Proceedings of SPIE 8817, 2013.
https://doi.org/10.1117/12.2024287

121. D. Hill, C. Ast, H.-G. Löhmannsröben, A. Zulqurnain, W. J. Parak, N. Hildebrandt. Size Determination of Quantum Dots with Fluorescence Correlation Spectroscopy. Proceedings of SPIE 7909, 2011.
https://doi.org/10.1117/12.874660

122. D. Wegner, D. Geißler, S. Stufler, H.-G. Löhmannsröben, N. Hildebrandt. Time-resolved and steady-state FRET spectroscopy on commercial biocompatible quantum dots. Proceedings of SPIE 7909, 2011.
https://doi.org/10.1117/12.874760

123. M. Kollosche, G. Kofod, S. Doering, N. Hildebrandt, J. Stumpe. Optical transmission gratings tuned by electro active polymers. Proceedings of the 2010 IEEE International Conference on Solid Dielectrics.
https://doi.org/10.1109/ICSD.2010.5568261

124. S. Doering, M. Kollosche, N. Hildebrandt, J. Stumpe, G. Kofod. Tunable diffractive optical elements on various electro active polymers. Proceedings of SPIE 7716, 2010.
https://doi.org/10.1117/12.854258

125. S. Doering, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, J. Stumpe. Azobenzene based surface relief gratings for thin film distributed feedback lasers. Proceedings of SPIE 7722, 2010.
https://doi.org/10.1117/12.854693

126. D. Geißler, D. Hill, H.-G. Löhmannsröben, E. Thomas, A. Lavigne, B. Darbouret, E. Bois, L.J. Charbonnière, R.F. Ziessel, N. Hildebrandt. Tumor specific lung cancer diagnostics with multiplexed FRET immunoassays. Proceedings of SPIE 7572, 2010.
https://doi.org/10.1117/12.842731

127. D. Geißler, H.-G. Löhmannsröben, L.J. Charbonnière, R.F. Ziessel, N.G. Butlin, I.L. Medintz, H. Mattoussi, N. Hildebrandt. Optical size determination of quantum dots using FRET with terbium complexes as donors. Proceedings of SPIE 7575, 2010.
https://doi.org/10.1117/12.842750

128. N. Hildebrandt. Energy transfer from terbium complexes to quantum dots – The advantage of independent donor and acceptor decay time analysis for investigations on FRET distance dependence. Proceedings of SPIE 7575, 2010.
https://doi.org/10.1117/12.842762

129. D. Geißler, N.G. Butlin, Hill D, H.-G. Löhmannsröben, N. Hildebrandt. Multiplexed diagnostics and spectroscopic ruler applications with terbium to quantum dots FRET. Proceedings of SPIE 7368, 2009.
https://doi.org/10.1117/12.831631

130. D. Geißler, N. Hildebrandt, L.J. Charbonnière, R.F. Ziessel, H.-G. Löhmannsröben. Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays. Proceedings of SPIE 7189, 2009.
https://doi.org/10.1117/12.809444

131. N. Hildebrandt, L.J. Charbonnière, R.F. Ziessel, H.-G. Löhmannsröben. Homogeneous FRET Immunoassay Based on Lanthanides to Quantum Dots Energy Transfer. Proceedings of SPIE 6448, 2007.
https://doi.org/10.1117/12.700206

132. M. Niederkrüger, C. Salb, G. Marowsky, M. Beck, N. Hildebrandt, H.-G. Löhmannsröben. Improvement of a Fluorescence Immunoassay with a Compact Diode-Pumped Solid State Laser at 315 nm. Proceedings of SPIE 6380, 2006.
https://doi.org/10.1117/12.685993

133. N. Hildebrandt, L.J. Charbonnière, R.F. Ziessel, H.-G. Löhmannsröben. Quantum Dots as Resonance Energy Transfer Acceptors for Monitoring Biological Interactions. Proceedings of SPIE 6191, 2006.
https://doi.org/10.1117/12.660660

134. M. Beck, N. Hildebrandt, H.-G. Löhmannsröben. Quantum Dots as Acceptors in FRET Assays Containing Serum. Proceedings of SPIE 6191, 2006.
https://doi.org/10.1117/12.662722

135. H.-G. Löhmannsröben, M. Beck, N. Hildebrandt, E. Schmälzlin, J.T. van Dongen. Laser-Based Fluoroimmuno Analysis and In-Vivo Optical Oxygen Monitoring. Proceedings of SPIE 6157, 2006.
https://doi.org/10.1117/12.663583

136. N. Hildebrandt, R. Flehr, E. Bois, H.-G. Löhmannsröben. Optimized Homogeneous Immunoassay Based on XeCI-Laser Excited Förster Resonance Energy Transfer. IEEE CLEO Europe 2005.
https://doi.org/10.1109/CLEOE.2005.1568413

N. Hildebrandt. Lanthanides and Quantum Dots – Time-Resolved Laser Spectroscopy of Biochemical Förster Resonance Energy Transfer (FRET) Systems, Dissertation at Universität Potsdam, 113 p., 2006.
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus-12686

1. L. Charbonnière, P. Kadjane, M. Starck, R. Ziessel, N. Hildebrandt. New dipyrazol-1-yl-pyridine compounds useful for preparing complex, which is useful for e.g. the detection of metal cations in solutions, as a luminescent marker for the absorption of two-photons, and the recognition of e.g. neuravidin. FR2935973, 03/2010.
https://patentscope.wipo.int/search/en/detail.jsf?docId=FR187095396

2. N. Hildebrandt, D. Geiβler, H.-G. Löhmannsröben, L.J. Charbonnière, R.F. Ziessel, E. Bois. Method for detecting an analyte in a sample by multiplexing FRET analysis and Kit. WO/2010/084015, 07/2010.
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010084015

3. W. R. Algar, A. L. Huston, N. Hildebrandt and I. L. Medintz. Spectro-Temporal Optical Encoding of Information Using a Time-Gated Fluorescence Resonance Energy Transfer (FRET). US/2013/0309671, 07/2013.
https://patentscope.wipo.int/search/en/detail.jsf?docId=US95599866

4. Z. Jin and N. Hildebrandt. Multiplexed homogeneous oligonucleotide detection. WO/2015/181101, 12/2015.
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015181101

5. N. Hildebrandt, L. Charbonnière, P. Reiss, S. Bhuckory, L. Mattera, K.D. Wegner. Nouveaux conjugues comprenant des nanocristaux semi-conducteurs et leur methode de preparation. FR3058141, 05/2018.
https://patentscope.wipo.int/search/en/detail.jsf?docId=FR215645371

6. X. Qiu, N. Hildebrandt. Kit and method for detecting or quantifying one or multiple nucleic acid targets. WO/2017/198733, 11/2017.
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017198733

7. M. Cardoso Dos Santos, L.J Charbonnière, C. Charpentier, V. Cifliku, J. Goetz, N. Hildebrandt, A. Nonat, K.-L. Wong. Ultrabright luminescent lanthanide nanoparticles comprising terbium, with longer excited-state lifetime. WO/2020/007966, 01/2020.
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020007966

8. F. De Angelis, D. Garoli, W. Rocchia, A. Spitaleri, N. Hildebrandt, D. Paladin, M. Schuette, H. R. Lehrach. Method and device for nanopore-based optical recognition of molecules. WO/2020/152563, 07/2020.
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020152563

Scroll to Top